

Functional anorectal disorders

Anton Emmanuel Swiss Coloproctology Study Group, January 2019

Approach

Pelvic floor neurophysiologyFaecal incontinence (*Dr Heinrich*)Constipation (*Dr Gingert*)Anorectal pain syndromes

Causes of peri-anal pain

Muscular causes

- levator ani syndrome
- proctalgia fugax
- myofascial syndrome
- coccygodynia

Structural causes with a lump

- thrombosed haemorrhoid
- anal abscess (may be with a fistula)
- sentinel tag (with anal fissure)
- condyloma

Structural causes without a lump

- anal fissure
- anal fistula

Rectal causes

- rectal prolapse
- proctitis

Pruritus ani

Proctalgia fugax

Pain: **ASS** = **A**cute, **S**evere, **S**hort-lived

Physical treatments: leg flexion, perianal pressure Multiple therapies

- internal sphincter relaxants (~10% advantage over placebo)
- salbutamol (22% advantage over placebo)
- anxiolytic (~16% advantage over placebo)

Levator ani syndrome

Chronic or recurrent (bouts >20 minutes) Dull pressure – worse with sitting, eased on standing Associated with constipation/dyspareunia Levator tenderness on palpation (esp during contraction)

Most common in women 30-60 years old Idiopathic...also post-op, trauma (including surgical), prolonged sitting, stress

Levator ani syndrome

Very treatable

- Digital massage } by reducing
- Hot baths (40 C)} anal pressure
- Electrogalvanic treatment partial or complete relief 43%
- Pelvic floor biofeedback 35% relief, unrelated to pelvic manometry
- Local injection triamcinolone relief 40%
- Muscle relaxants } anecdotal
- Anxiolytics / analgesics } evidence

Myofascial syndrome

- Sharp, chronic, deep muscular pain
- Perineal and anorectal location may extend to thighs
- Otherwise identical to levator ani syndrome except...
- ...multiple trigger points (pelvic floor, gluteals, abdo wall)
- Avoid straining
- Digital massage, local anaesthetic
- Local anaesthetic injections, Botox injection
- Acupuncture

Coccygodynia

Localised pain – worse on sitting or straining

Painful, incomplete defaecation

Females and obese especially

Trauma history common – rarely idiopathic, arthritic

Coccyx x-ray

Ring cushion, analgesia, sitz baths Local anaesthetic or steroid injection Resection VERY rarely needed

Rectal prolapse

- Mucosal prolapse is painless
- Full thickness prolapse associated with heaviness, dull pain Faecal or mucus soiling
- Examine while straining
- Investigate for more generalised pelvic organ dysfunction Surgery and behavioural training

Pruritus ani

Treat cause

Dermatological condition	Faecal soiling	Dietary triggers	Infection
Dermatitis	Incontinence	Caffeine	Pinworm
Lichen planus	Fissure/fistula	Beer	Candida
Lichen sclerosis	Altered bowel function	Chilli	STD
Psoriasis	Haemorrhoids/skin tags		Abscess
Hydradenitis	Rectal prolapse		
Systemic disease	Malignancy	Irritants	Neurogenic
Anaemia	Squamous cancer	Deodorants	Lumbosacral radiculopathy
Diabetes	Bowen disease	Detergents	
Leukaemia		Tight clothing	
IBD			

Pruritus ani

Itch-scratch cycle

Perianal hygiene and avoid irritants

Sedating histamine (hydroxyzine)

Topical hydrocortisone

Topical capsaicin (0.0006% in white paraffin) Biopsy?

Three overlapping pathogenic features to classify constipation

③ Evacuatory dysfunction (structural or physiological) NO or YES

① Disordered motility

Are current laxative options effective for chronic constipation?

16–40% of those with constipation use laxatives

Symptoms persist despite laxative use

Approximately 2000 adults each from: United States, US; United Kingdom, UK; France, FR; Germany, GE; Italy, IT; Brazil, BR; South Korea, SK

Wald et al. Aliment Pharmacol Ther 2008;28:917

Chronic constipation:

Symptoms in self-reported constipation

1149 participants

27.2% self-reported constipation within the past 3 months

16.7% and 14.9% constipation according to Rome I and II

Self-reported responders (%)

Summary: Tailoring laxatives to the patient, based on their symptoms and diagnosis

If no improvement:

- Increase dose¹
- Rational combination e.g.
 - Stool softener and stimulant laxative^{3,4} or
 - bulking agent¹

4. Sykes. Cancer Surv. 1994;21:137-46

Biofeedback vs **Pelvic Floor Exercises**

Faecal Incontinence Biofeedback

Heymen et al, Dis Colon Rectum 2009

Biofeedback for constipation

Evidence

Large amount of short- and long-term data from RCTs for biofeedback as an effective treatment for chronic constipation¹⁻⁵

Greatest effect in patients with pelvic floor dyssynergia:⁵

*For each follow-up interval, P<0.001

- Rao. Gastroenterol Clin North Am. 2008;37(3).569-86
- Rao et al. Clin Gastroenterol Hepatol. 2007;5(3):331-8
- Gadel Hak et al. Arab J Gastroenterol. 2011;12(1):15-9 4. 5.
- 2. 3. Rao et al. Am J Gastroenterol. 2010;105(4)890-6

1.

17

Chiarioni et al. Gastroenterology. 2005;129(1)86-97

Biofeedback for constipation

Biofeedback for slow transit

	Slow transit ((n=22)	Normal transit (n=27)			
	Before biofeedback	After biofeedback	Before biofeedback	After biofeedback		
Subjective improvement	_	14	_	15		
Bowel frequency <3 per week	16	6	11	3		
Hard or pellet stool	15	4	15	3		
Need to strain	12	3	14	6		
Need to digitate	4	2	15	7		
Abdominal bloating	19	5	20	6		
Laxative use	20	5	14	4		
Normal transit		13	27	27		
Mean number of retained markers	42.5	32.4	17.1	15.2		

Emmanuel et al Gut 2001

PTNS in Constipation

 Slow transit only (n=22)

 Puborectalis dyssynergia – manometric (n=24)

** p=NS for all

PTNS for faecal incontinence

Feet reveal pelvic structure and function S2-S3 innervation to both

Lateral toes more distal

Hypoplastic lateral toes associated with weak pelvic floor

Asymmetry in SNS – al-Qassab et al, Atlanta

n=57 SNS implant patients (urology)

38 patients with *asymmetry*; 19 with symmetry Success: 35 with *asymmetry* (92%); 13 with symmetry (68%)

19 asymmetry patients underwent bilateral:68% success in less well-formed side21% success in better formed side

Understanding the brain-gut axis

Posterior tibial nerve stimulation

Obstetric anal sphincter injury

 Table 3. Measures of Symptom Severity Before and After Treatment in Responders and Nonresponders.

	Responders			No	Nonresponders			Change in values		
	Baseline	After treatment	p	Baseline	After treatment	p	Responders	Nonresponders	p	
Wexner score	13 ± 3	4 ± 2	< 0.01	13 ± 5	12±5	0.13	-9	-1	<0.01	
Visual analogue scores										
Bowel	$63\pm19^{*}$	36 ± 24	< 0.01	$48\pm20^{*}$	39 ± 23	0.10	-26.8	-20.0	0.05	
Bladder	49 ± 30	45 ± 30	0.61	62 ± 30	56 ± 30	0.10	-3.6	-11.1	0.71	
Rockwood quality of life so	cores									
Life	3.2 ± 0.6	3.2 ± 0.6	0.70	2.8 ± 0.8	2.8 ± 0.8	0.61	0	0	0.50	
Coping and behavior	2.5 ± 0.8	2.5 ± 0.5	1	2.1 ± 0.7	2.1 ± 0.8	0.80	0	0	0.86	
Depression and self perception	1.9 ± 1.0	2.9 ± 0.9	<u><0.01</u>	2.4 ± 0.9	2.6 ± 0.8	0.10	+1.0	+0.2	0.03	
Embarrassment	2.2 ± 1.1	3.0 ± 0.9	0.04	2,4 ± 1.0	2.5 ± 0.9	0.54	+0.8	+0.1	0.09	
Bristol stool form score	5 (1)	3 (2)	< 0.01	5 (2)	4 (1.5)	0.08	-2	-1	0.06	

Underlined values are statistically significant (P \leq 0.05).

p < 0.01 for responders vs. nonresponders baseline values; higher visual analogue scores correspond to greater severity of symptoms; lower Rockwood scores correspond to greater disability; lower Bristol Stool Form scores correspond to firmer stool consistency; values are means \pm SD, medians (IQR).

Sanagapillai et al Neuromod 2018a

Multiple Sclerosis

Table 1. Wexner Score Changes in Responders and Nonresponders toPTNS.									
					Responders		Nonresponders		
N (%) Baseline Wexner score, mean \pm SD Post-therapy Wexner score, mean \pm SD					26 (79%) 13.5 ± 3.8 7.0 ± 2.8		7 (21%) 13.4 ± 3.9 13.9 ± 3.1		
Table 2. Measures of Symptom Se	everity Before	and After Treatmer	nt in Re	sponders and	Nonresponders.				
	Responders			Nonrespond	lers		Change in values		
	Baseline	After treatment	Р	Baseline	After treatment	Р	Responders	Nonresponders	Р
Visual analogue scores									
Bowel	58.5 ± 25.4	52.3 ± 24.8	0.28	45.7 ± 22.8	46.4 ± 14.1	0.67	-6.2	+0.9	0.47
Bladder	51.0 ± 26.0	53.1 ± 23.2	0.69	52.9 ± 25.1	50.7 ± 20.1	0.74	+2.1	-2.2	0.91
Rockwood quality of life scores									
Life	2.5 ± 0.9	2.9 ± 0.8	0.11	3.2 ± 0.7	3.1 ± 0.9	0.01	+0.4	-0.1	0.25
Coping and behavior	2.0 ± 0.7	2.4 ± 0.9	0.15	2.6 ± 0.4	2.4 ± 0.8	0.15	+0.4	-0.2	0.20
Depression and self-perception	2.7 ± 0.8*	3.1 ± 0.9	0.01	3.4 ± 0.4*	3.1 ± 0.8	0.18	+0.4	-0.3	0.05
Embarrassment	2.2 ± 0.8	2.6 ± 0.8	0.06	2.5 ± 1.0	2.4 ± 1.0	0.54	+0.4	-0.1	0.21
Bristol stool form score	5 (4-6)	4 (3–4)	0.02	5 (5-5.5)	5 (4.5-5.5)	0.44	-1	0	0.01

Higher visual analogue scores correspond to greater severity of symptoms.

Lower Rockwood scores correspond to greater disability.

Lower Bristol Stool Form scores correspond to firmer stool consistency.

Values are means \pm SD, medians (IQR).

*P < 0.05 for responders vs. nonresponders baseline values.

Sanagapillai et al Neuromod 2018b

Transanal irrigation

Christensen et al, DCR 2007

Adherence with transanal irrigation

¹Emmanuel, et al. PLoS One 2016

Perforations by weeks

Work done by the best Physiology Unit

